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WIEBE VAN DER HOEK

Foreword

This book collects all the papers that appeared in 2005 in Knowl-
edge, Rationality and Action (KRA), a journal published as a spe-
cial section of Synthese, which addresses contemporary issues in
epistemic logic, belief revision, game and decision theory, rational
agency, planning and theories of action. As such, the special section
appeals to researchers from Computer Science, Game Theory, Arti-
ficial Intelligence, Philosophy, Knowledge Representation, Logic and
Agents, addressing issues in artificial systems that have to gather
information, reason about it and then make a sensible decision
about what to do next.

It will be clear already from the contents pages, that this
book indeed reflects the core of KRA: the papers in this volume
address degrees of belief or certainty, and rational agency. The
latter has several manifestations: often constraints on the agent’s
belief, behaviour or decision making. Moreover, this book shows
that KRA indeed represents a ‘loop’ in the behaviour of the agent:
after having made a decision, the life of the agent does not end,
rather, it will do some sensing or collect otherwise the outcome
of its decision, to update its beliefs or knowledge accordingly and
make up its mind about the next decision task.

In fact, the chapters in this book represent two volumes of KRA:
the first appeared as a regular volume, the second contained a selec-
tion of papers that were accepted for the Conference on Logic and
the Foundations of the Theory of Games and Decisions (LOFT
2004). T will now give a brief overview of the themes in this book
and of the chapters in the regular volume, the papers of the LOFT-
volume are briefly introduced in Chapter five of this book.

The first two chapters, THE No PROBABILITIES FOR ACTS-PRINCIPLE
and A Locic FOR INDUCTIVE PROBABILISTIC REASONING, deal with
probabilistic reasoning: one in the context of deliberating about
future actions, or planning, and the other in that of making inductive
inferences. Chapter three, RATIONALITY As ConrForMITY and Chap-
ter eleven, A LocicAL FRAMEWORK FOR CONVENTION, both describe
rational agents that reason about the rationality of other agents. In
Chapter three the challenge of the agent is to act in conformance

© Springer 2006



viil Wiebe van der Hoek

with the other, in Chapter eleven the emphasis is on predicting the
other agents’ decision. Both chapters give an account of the recip-
rocal reasoning that such a decision problem triggers, using notions
like common knowledge, common belief, common sense, common
reasoning and common reasons for belief.

Reasons for belief are also the topic of Chapter four, ON THE
STRUCTURE OF RATIONAL ACCEPTANCE: COMMENTS ON HAWTHORNE
AND Bovens. The chapter investigates ways to deal with the contra-
diction that arises from three simple postulates of rational acceptance
for an agent’s beliefs. Chapter six, A SIMPLE MoDAL LoGIC FOR BELIEF
REvisionN, and Chapter seven, PROLEGOMENA TO DyNaMic LoGIc FOR
BELIEF REVIsION, both give a modal logical account of the dynamics
of a rational agent’s belief. Chapter six introduces a belief operator
for initial belief and one for the belief after a revision, and Chap-
ter seven gives an account of update when we have many grades of
belief. Degrees of belief are also the topic of Chapter eight, From
KNOWLEDGE-BASED PROGRAMS TO GRADED BELIEF-BASED PROGRAMS,
PART I: ON-LINE REASONING: here, the beliefs can be updated by the
agent, but are also used to guide his decision during execution of a
program.

Chapter nine, ORDER-INDEPENDENT TRANSFORMATIVE DECISION
RuLEs and ten, A PRAGMATIC SOLUTION FOR THE PARADOX OF
Freg CHoICE PERMISSION, take us back to formalisations of ratio-
nal agents again. In Chapter nine the authors focus on the repre-
sentation of a decision problem for such an agent: the agent prefers
certain representations over others, and uses transformation rules to
manipulate them. In chapter ten, the rational agent is a speaker in a
conversation, and the author uses some ideas from the area of ‘only
knowing’ to model certain Gricean maxims of conversation in order
to formally analyse free choice permission.

Regarding the first four chapters, in the miniature THE No
PROBABILITIES FOR AcTs-PrINCIPLE, Marion Ledwig addresses this
NPA principle as put forward by Spohn: “Any adequate quantita-
tive decision model must not explicitly or implicitly contain any sub-
Jective probabilities for acts”. Ledwig discusses several consequences
of the principle which are relevant for decision theory, in particular
for Dutch book arguments and game theory: the NPA-principle is
at odds with conditionalising on one’s actions (as done in diachronic
Dutch books) and the assumption that one will choose ratio-
nally and therefore predict one’s choices (as done in game theory).
Finally, she makes clear that the NPA-principle refers not to past
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actions or actions of other persons, but rather to actions that are
performable now and extend into the future.

Manfred Jaeger proposes A Locic FOR INDUCTIVE PROBABILISTIC
REASONING in the second chapter of this book. In such kind of rea-
soning, one applies inference patterns that use statistical background
information in order to assign subjective probabilities to subjective
events. The author sets himself three design principles when propos-
ing a logical language that formalises inductive probabilistic reason-
ing: expressiveness, completeness and epistemic justifiability. Indeed,
the language proposed enables the encoding of complex probabilis-
tic information, and, by putting an elegant semantics based on log-
arithmic real-closed values to work, a completeness result for the
expressive language is obtained. Finally, regarding justifiability, it is
the author’s aim to model with the inductive entailment relation a
well-justified pattern of defeasible probabilistic reasoning, i.e., to use
statistical information to refine an already partially formed subjec-
tive probability assignment. For this, it is argued, cross-entropy min-
imisation relative to possible statistical distributions is the adequate
formal model.

In RatioNaLITY As CoNForMITY Hykel Hosni and Jeff Paris face
the following problem: choose one of a number of options, in such
a way that your choice coincides with that of a like-minded, but
otherwise inaccessible (in particular non-communicating), agent. In
other words, our agent has to ‘predict’” what an other agent would
choose, if that other agent were confronted with the same prob-
lem, i.e., to make that choice that coincides with our agent. If a
unique option in the space of choices would obviously stand out,
that will be the object of choice, and if they are all the same, the
best our agents could do is randomise. But what to do in intermedi-
ate cases, i.e., where the alternatives are not all alike, but only show
some structure? In the authors’ approach, the agent first singles out
a number of outstanding options (called a reason), and then takes a
random choice from those. They discuss and mathematically charac-
terise three different reasons: the regulative reason (satisfying weak
criteria to choose some naturally outstanding elements: an agent not
following them would perform ‘unreasonable steps’); the minimum
ambiguity reason (a procedural approach based on the notion of
indistinguishability of the options) and the smallest uniquely defin-
able reason (take the smallest set of options that is definable in a
suitable first-order language). These reasons are then compared and
discussed with respect to Game Theory and Rationality.
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Gregory Wheeler discusses principles for acceptance of beliefs by
a rational agent, in his chapter ON THE STRUCTURE OF RATIONAL
AccCEPTANCE: COMMENTS ON HAWTHORNE AND BoVENs. He starts off
with observing that the following three principles for rational accep-
tance together lead to a contradiction: (i) it is rational to accept a
proposition that is very likely to be true; (ii) it is not rational to
accept a proposition that you are aware is inconsistent; (i7i) if it is
rational to accept 4 and also to accept A’, that it is rational to
accept their conjunction 4 A A’. This is for instance illustrated by
the Lottery Paradox, in which you rationally accept that each ticket
i will not be the winning ticket, but still you don’t accept that no
ticket will be the winner’s. Wheeler’s approach is structural in the
sense that it is deemed necessary to have some connectives in the
object language in order to express compound rationally accepted
formulas, and to define a notion of logical consequence for such for-
mulas. He then argues that any proposal that solves paradoxes as
the one mentioned above, should be structural, in order to bring the
conflict between the principles (i) and (iii) to the fore.



MARION LEDWIG

THE NO PROBABILITIES FOR ACTS-PRINCIPLE'

ABSTRACT. One can interpret the No Probabilities for Acts-Principle, namely that
any adequate quantitative decision model must in no way contain subjective prob-
abilities for actions in two ways: it can either refer to actions that are performable
now and extend into the future or it can refer to actions that are not performable
now, but will be in the future. In this paper, I will show that the former is the better
interpretation of the principle.

1. INTRODUCTION

Spohn (1977, 1978) claims that his causal decision theory is valuable
in part for its explicit formulation of a principle used earlier by
Savage (1954, 1972) and Fishburn (1964). This principle, henceforth
called the “No Probabilities for Acts’-Principle (or the NPA-Prin-
ciple) is the following: ““Any adequate quantitative decision model must
not explicitly or implicitly contain any subjective probabilities for acts”
(Spohn 1977, 114).2 Spohn (1978) maintains that the NPA-Principle
isn’t used in the rational decision theories of Jeffrey (1965) and of
Luce and Krantz (1971), and that this lack is the root for the theories’
wrong answers in Newcomb’s problem, namely taking only one box
(cf. Nozick 1969). According to Spohn (1977) this principle is
important, because it has implications for the concept of action,
Newcomb’s problem, the theory of causality, and freedom of will. In
a recent paper, Spohn (1999, 44-45) modifies this principle. He
postulates that in the case of strategic thinking, that is, in the case of
sequential decision making, the decision maker can ascribe subjective
probabilities to his future, but not to his present actions without
giving a justification for his claim.’

I agree with Spohn that the NPA-principle has implications for the
concept of action. If the NPA-principle holds, the decision maker has
full control over his actions, that is, he assigns a subjective proba-
bility of one to the actions he has decided for and a subjective
probability of zero to those he has decided against.* Furthermore, it

Synthese (2005) 144: 171-180 © Springer 2005
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172 MARION LEDWIG

has implications for a theory of causality if one maintains a proba-
bilistic theory of causality as Spohn (1983) himself does.’ Finally, it
has implications for freedom of will, since an implicit condition for
the application of the NPA-principle is that the decision maker is
free.

In my opinion, the NPA-principle has some additional conse-
quences for Dutch books (cf. Levi 1987) and game theory (cf. Levi
1997, chap. 2). In the case of diachronic Dutch books, the decision
maker must conditionalize on his actions, which violates the NPA-
principle. With regard to game theory, the assumption of common
knowledge of rationality entails that each agent believes he or she will
choose rationally. This means that each agent will be predicting and
therefore also assigning probabilities to his or her own choice counter
to Levi’s contention that deliberation crowds out prediction. So if the
NPA-principle holds, game theory has to be built on other assump-
tions.

I claim that the NPA-principle has some other important conse-
quences:

(1) in opposition to causal decision theories® and Kyburg’s
(1980) proposal to maximize properly epistemic utility, evidential
decision theories’ violate the NPA-principle, because the decision
maker conditions his credences by his actions in calculating the
utility of an action. Jeffrey’s (1983) ratificationism shows a similar
feature, for the decision maker conditions his credences by his
final decisions to perform his actions. Nozick’s (1993) proposal
of combining various decision principles also disagrees with the
NPA-principle by using evidential decision principles. Meek and
Glymour (1994) claim that if the decision maker views his actions
as non-interventions in the system, he conditions his credences by
his actions, so the NPA-principle is violated here, too. Hence if the
NPA-principle is valid, the decision theories which violate it pro-
vide wrong solutions to some decision problems and therefore
should be abandoned.

(2) By means of the NPA-principle the decision maker cannot take
his actions as evidence of the states of the world. The decision ma-
ker’s credence function cannot be modified by the evidence of the
actions, since the NPA-principle demands that the decision maker
shouldn’t assign any credences to his actions. Thus Jeffrey’s (1965)
logic of decision, which takes actions as evidence of states of the
world, cannot be right if the NPA-principle is valid. Other rational
decision theories also assert that the decision maker cannot take his

2]



THE NO PROBABILITIES FOR ACTS-PRINCIPLE 173

actions as evidence of the states of the world. In Jeffrey’s ratifica-
tionism (1983), for example, the decision maker takes his decisions,
but not his actions as evidence of the states of the world. In Eells’
(1981, 1982, 1985) proposal of the common cause, the decision ma-
ker’s beliefs and wants and not his actions are evidence of the states
of the world. In Kyburg’s (1980, 1988) proposal of maximizing
properly epistemic utility the decision maker doesn’t take his free
actions as evidence of the states of the world.

(3) Another consequence of the NPA-principle is to favor Savage’s
(1954, 1972) trinitarianism, distinguishing between acts, states, and
consequences, over Jeffrey’s (1965) monotheism, where acts, states,
and consequences are all events or propositions, and therefore should
be treated all alike.

Due to the great number of the NPA-principle’s implications,
Spohn (1977, 1978) makes his principle more precise, suggests argu-
ments for it (e.g., point (4)), and points out immediate consequences
of it (e.g., point (5)):

(1) The NPA-principle refers to future actions of the decision maker.

(2) Credences for actions do not manifest themselves in the willing-
ness to bet on these actions.

(3) The NPA-principle requires that actions are things which are
under the decision maker’s full control relative to the decision
model describing him.

(4) A theoretical reason for the NPA-principle is that credences for
actions cannot manifest themselves in these actions.

(5) An immediate consequence of the NPA-principle is that uncon-
ditional credences for events which probabilistically depend on
actions are forbidden.

Respective objections to these claims are the following (with re-
gard to point (5) no objection came to my mind):

(1) The term future actions is ambiguous; it can either refer to ac-
tions that are performable now and extend into the future or it
can refer to actions that are not performable now, but will be in
the future.

(2) Why could not the decision maker’s probability judgments con-
cerning what the decision maker will do be correlated with the
decision maker’s willingness to bet? There might be some decision
makers, however, who have an aversion to betting and therefore
might not be willing to put their money where their mouth is. But

3]
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if one forces them to do so, they surely would bet in accordance
with their probability judgments.

(3) We do not have to claim that P(a;la;) =1 is a necessary and
sufficient condition for full control in order to claim that options
are under the decision maker’s full control, for a; could be a state
and not an action. Moreover, one might want to object that
Spohn conflates issues about what a person can control with
questions about probabilities for actions (Joyce 2002).

(4) Even if credences for actions play no useful role in decision
making, Spohn has not shown that they play a harmful role in
decision making and should therefore be ommitted (Rabinowicz
2002).

In the following I will explain and criticize in detail only point (1),
namely that the NPA-principle refers to future actions of the decision
maker. I will begin by presenting Spohn’s (1978, 72—73) two examples
to provide an intuitive motivation for the NPA-principle: If a friend
asks me whether I will be coming to a party tonight and if I answer
“yes”, then this is not an assertion or a prediction, but an
announcement, an acceptance of an invitation, or even a promise.
Moreover, if a visitor asks me whether I really believe that I will make
a certain move in chess, then I will reply that the question is not
whether I believe this, but whether I really want this. That is, in
general it can be questioned that, in utterances about one’s own
future actions, belief dispositions with regard to these actions are
manifested. Hence, if I decide to perform a particular action, I also
believe I will perform that action.

2. THE NPA-PRINCIPLE REFERS TO FUTURE ACTIONS OF THE
DECISION MAKER

The NPA-principle does not refer to past actions and actions of other
persons, but only to actions which are open to the decision maker in
his decision model, that is, to future actions of the decision maker.
Yet “future actions” is ambiguous. It can either refer to actions that
are performable now and extend into the future or it can refer to
actions that are not performable now, but will be in the future.® As I
understand Spohn, the NPA-principle refers to actions that are per-
formable now and extend into the future,” for Spohn (1977, 115)
concedes that decision makers frequently have and utter beliefs about
their future actions like the following:

[4]
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(1) ““I believe it is improbable that I will wear shorts during the
next winter.”

Moreover, Spohn (1977, 116) points out that “As soon as I have to
make up my mind whether to wear my shorts outdoors or not, my
utterance is out of place.” That is, as soon as I have to deliberate
about wearing my shorts outdoors now, I cannot say anymore I
believe it is improbable that I will wear shorts outdoors now.” Thus
according to Spohn decision makers should not assign subjective
probabilities to actions that are performable now, but extend into the
future.

Yet Spohn (1977, 115) wants this utterance to be understood in
such a way that it does not express a credence for an action, but a
credence for a decision situation:

(2) “I believe it is improbable that I will get into a decision situ-
ation during the next winter in which it would be best to wear
shorts.”

Thus Spohn assumes that the embedded sentences ““‘I will wear shorts
during the next winter’” and I will get into a decision situation
during the next winter in which it would be best to wear shorts” are
logically equivalent, which is not true. For while it might be the case
that I will not wear shorts during the next winter, it might happen
that I get into a decision situation during the next winter in which it
would be best to wear shorts. Moreover, identifying an action with a
decision situation seems to be problematical, as these are clearly two
different things.

However, if we, despite the logical inequivalence, concede this
opinion to Spohn for a while, we can observe that something else goes
wrong. Observe:

(3) “I believe it is improbable that I will run 100 meters in 7 sec-
onds during the next year.”

According to Spohn this utterance should be reformulated, since it
does not express a genuine probability for an action:

(4) “I believe it is improbable that I will get into a decision situ-
ation during the next year in which it would be best to run
100 meters in 7 seconds.”

Yet while (3) might be true, (4) might be false. With regard to (3) I
know because of my bodily constitution it would not matter how

[5]
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much I tried, I never would be able to run 100 meters in 7 seconds, so
indeed I believe it is improbable that I will run 100 meters in 7 sec-
onds during the next year. At the same time with regard to (4) it could
happen that the Olympic Games were to take place next year and
luckily I qualified for the Olympic team of my country, so that I was
in a decision situation in which it would be best for me to run
100 meters in 7 seconds. Thus my belief that it is improbable that I
will get into a decision situation during the next year in which it
would be best for me to run 100 meters in 7 seconds would be false.
Hence there might be a belief context in which (3) is true, but (4) is
false.

One might want to object that this reformulation makes sense
under the assumption that the decision maker knows that he is
strong-willed and thus knows that he will only do what he thinks
is best to do and therefore believes it to be improbable to get
into a decision situation during the next year in which it would
be best to run 100 meters in 7 seconds. True — yet not all deci-
sion makers have that constitution. Hence this objection does not
generalize.

What is the relevance of these insights? Not much, as the
NPA-principle only refers to actions that are performable now and
extend into the future, his reformulation of actions that are not
performable now, but will be performable in the future, is of no
relevance for the NPA-principle. One can deny that [(1) and (2)]
and [(3) and (4)] are synonyms and still accept the NPA-principle.
Furthermore, one can even ask why it is so important for Spohn to
find alternative interpretations of (1) and (3)? By putting forth
alternative interpretations, Spohn seems to defend the view that,
even in the case of actions that are not performable now but will
be performable in the future, the decision maker should not assign
any subjective probabilities to his actions. But we have just seen
that this is not so, that is, Spohn allows the decision maker to
assign subjective probabilities to his actions that are performable in
the future. Yet, strictly put in Spohn’s view, even utterances like (1)
don’t express a genuine probability for an action, only a proba-
bility for a decision situation. Thus Levi’s (1997, 80) suggestion
turns out to be right, namely that these interpretations are meant
to express that the decision maker isn’t even able to predict his
actions that are not performable now, but will be in the future;'? if
utterances like (1) express a probability for a decision situation and
not for an action, then the decision maker is not even able to

[6]
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predict his actions that are not performable now, but will be in the
future.

3. CONCLUSION

I have clarified that the NPA-principle refers to actions that are
performable now and extend into the future.

NOTES

' T would like to thank Andreas Blank, Phil Dowe, Alan Hajek, James Joyce, Isaac
Levi, Nicholas Rescher, Teddy Seidenfeld, Wolfgang Spohn, Howard Sobel, and
especially two anonymous referees from the BJPS and two anonymous referees from
KRA for very helpful comments and discussion. Errors remain my own. I also would
like to thank Elias Quinn for correcting and improving my English. A part of this
paper was given as a talk in the Fourth In-House Conference in October 2001 during
my visit at the Center for Philosophy of Science, University of Pittsburgh, 2001-2002
(cf. also Ledwig 2001).

2 Trivial conditional subjective probabilities, like P(a;|a;) = 1 for an action a; or
P(asla;) = 0 for two disjunctive actions a; and a,, are not considered (Spohn 1977,
1978).

3 Spohn is not the only one to defend his principle; the weaker thesis that the
decision maker should not ascribe subjective probabilities of one or zero to his
actions is widely accepted (cf. Ginet 1962; Shackle 1967; Goldman 1970; Jeffrey 1977,
1983; Schick 1979, 1999; Levi 1986). Even the stronger thesis that the decision maker
should not ascribe any subjective probabilities to his actions is defended (Levi 1989,
1997; cf. Gilboa 1999). For a discussion of these issues, have a look at Ledwig
(forthcoming). As Levi’s and Gilboa’s arguments for the stronger thesis (with the
exception of Levi’s betting argument) differ from Spohn’s argument, my criticism of
the NPA-principle does not hold for these.

4 One might object that this implication does not hold, if in P(a;|a;) = 1 a; is a state
and not an action, because this is simply a consequence of the calculus of proba-
bilities which is true. So this implication only holds, given that one considers only
actions as input and does not consider sequential decision problems in which an
action may change its status over time from outcome to action to part of the state of
the world (cf. Skyrms 1990, 44).

5 Which causation theory is the adequate one, I want to leave for another paper.
® Gibbard and Harper (1978), Skyrms (1980, 1982, 1984), Sobel (1986), Lewis
(1981), and Spohn (1978).

7 Jeffrey (1965, 1988, 1996) and Eells (1981, 1982, 1985).

8 Spohn does not distinguish between different kinds of future actions.

° The extension into the future can be minimal, but needs to be there. Otherwise one
could not speak of future actions anymore.

19With this we have discovered a further possible implication of the NPA-principle,
namely if the NPA-principle holds, the decision maker is not able to predict his own

[7]
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actions that are performable now and extend into the future. Yet, that deliberation
crowds out prediction has already been widely discussed in the literature (Ginet 1962;
Jeffrey 1965, 1977, 1983; Shackle 1967; Pears 1968; Goldman 1970, chapter 6; Schick
1979, 1999; Ledwig forthcoming; Levi 1986, Section 4.3, 1989, 1997; cf. Gilboa 1999;
Joyce 2002; Rabinowicz 2002). I deal with these authors and their views in Ledwig
(forthcoming); moreover, in Ledwig (forthcoming) I defend the thesis that deliber-
ation and prediction are compatible with each other.
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MANFRED JAEGER

A LOGIC FOR INDUCTIVE PROBABILISTIC REASONING

ABSTRACT. Inductive probabilistic reasoning is understood as the application of
inference patterns that use statistical background information to assign (subjective)
probabilities to single events. The simplest such inference pattern is direct inference:
from “70% of As are Bs” and “a is an A” infer that a is a B with probability 0.7.
Direct inference is generalized by Jeffrey’s rule and the principle of cross-entropy
minimization. To adequately formalize inductive probabilistic reasoning is an inter-
esting topic for artificial intelligence, as an autonomous system acting in a complex
environment may have to base its actions on a probabilistic model of its environment,
and the probabilities needed to form this model can often be obtained by combin-
ing statistical background information with particular observations made, i.e., by
inductive probabilistic reasoning. In this paper a formal framework for inductive
probabilistic reasoning is developed: syntactically it consists of an extension of the
language of first-order predicate logic that allows to express statements about both
statistical and subjective probabilities. Semantics for this representation language are
developed that give rise to two distinct entailment relations: a relation = that mod-
els strict, probabilistically valid, inferences, and a relation |~ that models inductive
probabilistic inferences. The inductive entailment relation is obtained by implement-
ing cross-entropy minimization in a preferred model semantics. A main objective of
our approach is to ensure that for both entailment relations complete proof systems
exist. This is achieved by allowing probability distributions in our semantic mod-
els that use non-standard probability values. A number of results are presented that
show that in several important aspects the resulting logic behaves just like a logic
based on real-valued probabilities alone.

1. INTRODUCTION

1.1. Inductive Probabilistic Reasoning

Probabilities come in two kinds: as statistical probabilities that
describe relative frequencies, and as subjective probabilities that
describe degrees of belief. To both kinds of probabilities the same
rules of probability calculus apply, and notwithstanding a long and
heated philosophical controversy over what constitutes the proper
meaning of probability (de Finetti 1937; von Mises 1951; Savage
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1954; Jaynes 1978), few conceptual difficulties arise when we deal
with them one at a time.

However, in commonsense or inductive reasoning one often
wants to use both subjective and statistical probabilities simulta-
neously in order to infer new probabilities of interest. The simplest
example of such a reasoning pattern is that of direct inference (Rei-
chenbach 1949, Section 72; Carnap 1950, Section 94), illustrated by
the following example: from

@) 2.7% of drivers whose annual mileage is between 10,000
and 20,000 miles will be involved in an accident within the
next year

and

2) Jones is a driver whose annual mileage is between 10,000
and 20,000 miles

infer

(3)  The probability that Jones will be involved in an accident
within the next year is 0.027.

The 2.7% in (1) is a statistical probability: the probability that a
driver randomly selected from the set of all drivers with an annual
mileage between 10,000 and 20,000 will be involved in an accident.
The probability in (3), on the other hand, is attached to a proposi-
tion that, in fact, is either true or false. It describes a state of knowl-
edge or belief, for which reason we call it a subjective probability.!

Clearly, the direct inference pattern is very pervasive: not only
does an insurance company make (implicit) use of it in its compu-
tation of the rate it is willing to offer a customer, it also under-
lies some of the most casual commonsense reasoning (“In very few
soccer matches did a team that was trailing 0:2 at the end of the
first half still win the game. My team is just trailing 0:2 at halftime.
Too bad”.), as well as the use of probabilistic expert systems. Take a
medical diagnosis system implemented by a Bayesian network (Pearl
1988; Jensen 2001), for instance: the distribution encoded in the net-
work (whether specified by an expert or learned from data) is a sta-
tistical distribution describing relative frequencies in a large number
of past cases. When using the system for the diagnosis of patient
Jones, the symptoms that Jones exhibits are entered as evidence, and
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the (statistical) probabilities of various diseases conditioned on this
evidence are identified with the probability of Jones having each of
these diseases.

Direct inference works when for some reference class C and
predicate P we are given the statistical probability of P in C, and
for some singular object ¢ all we know is that ¢ belongs to C. If
we have more information than that, direct inference may no longer
work: assume in addition to (1) and (2) that

4) 3.1% of drivers whose annual mileage is between 15,000
and 25,000 miles will be involved in an accident within the

next year
and

&) Jones is a driver whose annual mileage is between 15,000
and 25,000 miles.

Now direct inference can be applied either to (1) and (2), or to (4)
and (5), yielding the two conflicting conclusions that the probabil-
ity of Jones having an accident is 0.027 and 0.031. Of course, from
(1), (2), (4), and (5) we would infer neither, and instead ask for the
percentage of drivers with an annual mileage between 15,000 and
20,000 that are involved in an accident. This number, however, may
be unavailable, in which case direct inference will not allow us to
derive any probability bounds for Jones getting into an accident.
This changes if, at least, we know that

(6) Between 2.7 and 3.1% of drivers whose annual mileage is
between 15,000 and 20,000 miles will be involved in an
accident within the next year.

From (1), (2), and (4)—(6) we will at least infer that the probability
of Jones having an accident lies between 0.027 and 0.031. This no
longer is direct inference proper, but a slight generalization thereof.

In this paper we will be concerned with inductive probabilis-
tic reasoning as a very broad generalization of direct inference.
By inductive probabilistic reasoning, for the purpose of this paper,
we mean the type of inference where statistical background infor-
mation is used to refine already existing, partially defined subjec-
tive probability assessments (we identify a categorical statement like
(2) or (5) with the probability assessment: “with probability 1 is
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Jones a driver whose...”). Thus, we here take a fairly narrow view
of inductive probabilistic reasoning, and, for instance, do not con-
sider statistical inferences of the following kind: from the facts that
the individuals jonesi, joness, ..., jonesjy are drivers, and that
jonesi, ..., jonesyy drive less and jonessi, ..., jonesjpy more than
15,000 miles annually, infer that 30%of drivers drive less than 15,000
miles. Generally speaking, we are aiming at making inferences only
in the direction from statistical to subjective probabilities, not from
single-case observations to statistical probabilities.

Problems of inductive probabilistic reasoning that go beyond the
scope of direct inference are obtained when the subjective input-
probabilities do not express certainties

7 With probability 0.6 is Jones a driver whose annual
mileage is between 10,000 and 20,000 miles.

What are we going to infer from (7) and the statistical probability
(1) about the probability of Jones getting into an accident? There do
not seem to be any sound arguments to derive a unique value for
this probability; however, 0.6 x 0.027 = 0.0162 appears to be a sen-
sible lower bound. Now take the subjective input probabilities

(8)  With probability 0.6 is Jones’s annual mileage between
10,000 and 20,000 miles, and with probability 0.8 between
15,000 and 25,000 miles.

Clearly, it’s getting more and more difficult to find the right for-
mal rules that extend the direct inference principle to such general
inputs.

In the guise of inductive probabilistic reasoning as we understand
it, these generalized problems seem to have received little attention
in the literature. However, the mathematical structure of the task
we have set ourselves is essentially the same as that of probability
updating: in probability updating we are given a prior (usually sub-
jective) probability distribution representing a state of knowledge at
some time ¢, together with new information in the form of categor-
ical statements or probability values; desired is a new posterior dis-
tribution describing our knowledge at time # + 1, with the new infor-
mation taken into account. A formal correspondence between the
two problems is established by identifying the statistical and sub-
jective probability distributions in inductive probabilistic inference
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with the prior and posterior probability distribution, respectively, in
probability updating.

The close relation between the two problems extends beyond
the formal similarity, however: interpreting the statistical probabil-
ity distribution as a canonical prior (subjective) distribution, we can
view inductive probabilistic reasoning as a special case of proba-
bility updating. Methods that have been proposed for probability
updating, therefore, also are candidates to solve inductive probabi-
listic inference problems.

For updating a unique prior distribution on categorical infor-
mation, no viable alternative exists to conditioning: the posterior
distribution is the prior conditioned on the stated facts. > Note that
conditioning, seen as a rule for inductive reasoning, rather than
probability updating, is just direct inference again.

As our examples already have shown, this basic updating/induc-
tive reasoning problem can be generalized in two ways: first, the
new information may come in the form of probabilistic constraints
as in (7), not in the form of categorical statements; second, the prior
(or statistical) information may be incomplete, and only specify a
set of possible distributions as in (6), not a unique distribution. The
problem of updating such partially defined beliefs has received con-
siderable attention (e.g., Dempster 1967; Shafer 1976; Walley 1991;
Gilboa and Schmeidler 1993; Moral and Wilson 1995; Dubois and
Prade 1997; Grove and Halpern 1998). The simplest approach is
to apply an updating rule for unique priors to each of the distri-
butions that satisfy the prior constraints, and to infer as partial
posterior beliefs only probability assignments that are valid for all
updated possible priors. Inferences obtained in this manner can be
quite weak, and other principles have been explored where updat-
ing is performed only on a subset of possible priors that are in
some sense maximally consistent with the new information (Gilboa
and Schmeidler 1993; Dubois and Prade 1997). These methods are
more appropriate for belief updating than for inductive probabilis-
tic reasoning in our sense, because they amount to a combination
of prior and new information on a more or less symmetric basis.
As discussed above, this is not appropriate in our setting, where the
new single case information is not supposed to have any impact on
the statistical background knowledge. Our treatment of incompletely
specified priors, therefore, follows the first approach of taking every
possible prior (statistical distribution) into account (see Section 4.1
for additional comments on this issue).
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The main problem we address in the present paper is how to
deal with new (single-case) information in the form of general prob-
ability constraints. For this various rules with different scope of
application have previously been explored. In the case where the
new constraints prescribe the probability values py, ..., pr of pair-
wise disjoint alternatives Ay,..., A, Jeffrey’s rule (Jeffrey 1965) is a
straightforward generalization of conditioning: it says that the pos-
terior should be the sum of the conditional distributions given the
A;, weighted with the prescribed values p;. Applying Jeffrey’s rule
to (1) and (7), for instance, we would obtain 0.6 x 0.027 + 0.4 x
r as the probability for Jones getting into an accident, where r
is the (unspecified) statistical probability of getting into an acci-
dent among drivers who do less than 10,000 or more than 20,000
miles.

When the constraints on the posterior are of a more general form
than permitted by Jeffrey’s rule, there no longer exist updating rules
with a similarly intuitive appeal. However, a number of results indi-
cate that cross-entropy minimization is the most appropriate general
method for probability updating, or inductive probabilistic inference
(Shore and Johnson 1980; Paris and Vencovska 1992; Jaeger 1995b).
Cross-entropy can be interpreted as a measure for the similarity
of two probability distributions (originally in an information theo-
retic sense (Kullback and Leibler 1951)). Cross-entropy minimiza-
tion, therefore, is a rule according to which the posterior (or the
subjective) distribution is chosen so as to make it as similar as pos-
sible within the given constraints to the prior (resp. the statistical)
distribution.

Inductive probabilistic reasoning as we have explained it so far
clearly is a topic with its roots in epistemology and the philoso-
phy of science rather than in computer science. However, it also is
a topic of substantial interest in all areas of artificial intelligence
where one is concerned with reasoning and decision making under
uncertainty.

Our introductory example is a first case in point. The inference
patterns described in this example could be part of a probabilistic
expert system employed by an insurance company to determine the
rate of a liability insurance for a specific customer.

As a second example, consider the case of an autonomous agent
that has to decide on its actions based on general rules it has
been programmed with, and observations it makes. To make things
graphic, consider an unmanned spacecraft trying to land on some
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distant planet. The spacecraft has been instructed to choose one of
two possible landing sites: site A is a region with a fairly smooth
surface, but located in an area subject to occasional severe storms;
site B lies in a more rugged but atmospherically quiet area. Accord-
ing to the statistical information the spacecraft has been equipped
with, the probabilities of making a safe landing are 0.95 at site
A when there is no storm, 0.6 at site A under stormy conditions,
and 0.8 at site B. In order to find the best strategy for making a
safe landing, the spacecraft first orbits the planet once to take some
meteorological measurements over site A. Shortly after passing over
A it has to decide whether to stay on course to orbit the planet once
more, and then land at A (20 h later, say), or to change its course
to initiate landing at B. To estimate the probabilities of making a
safe landing following either strategy, thus the probability of stormy
conditions at A in 20 h time has to be evaluated. A likely method to
obtain such a probability estimate is to feed the measurements made
into a program that simulates the weather development over 20 h, to
run this simulation, say, one hundred times, each time adding some
random perturbation to the initial data and/or the simulation, and
to take the fraction ¢ of cases in which the simulation at the end
indicated stormy conditions at A as the required probability. Using
Jeffrey’s rule, then 0.6 + 0.95(1 —¢q) is the estimate for the proba-
bility of a safe landing at A.

This example illustrates why conditioning as the sole instrument
of probabilistic inference is not enough: there is no way that the
spacecraft could have been equipped with adequate statistical data
that would allow it to compute the probability of storm at A in 20h
time simply by conditioning the statistical data on its evidence, con-
sisting of several megabytes of meteorological measurements. Thus,
even a perfectly rational, automated agent, operating on the basis
of a well-defined finite body of input data cannot always infer sub-
jective probabilities by conditioning statistical probabilities, but will
sometimes have to engage in more flexible forms of inductive prob-
abilistic reasoning.’

1.2. Aims and Scope

To make inductive probabilistic reasoning available for AI appli-
cations, two things have to be accomplished: first, a formal rule
for this kind of probabilistic inference has to be found. Second, a
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formal representation language has to be developed that allows us
to encode the kind of probabilistic statements we want to reason
with, and on which inference rules for inductive probabilistic rea-
soning can be defined.

In this paper we will focus on the second of these problems,
basically taking it for granted that cross-entropy minimization is
the appropriate formal rule for inductive probabilistic reasoning (see
Section 3.1 for a brief justification). The representation language
that we will develop is first-order predicate logic with additional
constructs for the representation of statistical and subjective proba-
bility statements. To encode both deductive and inductive inferences
on this language, it will be equipped with two different entailment
relations: a relation = that describes valid probabilistic inferences,
and a relation R that describes inductive probabilistic inferences
obtained by cross-entropy minimization. For example, the represen-
tation language will be rich enough to encode all the example state-
ments (1)—(8) in formal sentences ¢y, ..., ¢s.

If, furthermore, v is a sentence that says that with probability
0.4 Jones drives less than 10,000 or more than 20,000 miles annu-
ally, then we will obtain in our logic

é7 = Yo,

because v follows from ¢; by the laws of probability theory. If, on
the other hand, v says that with probability at least 0.0162 Jones
will be involved in an accident, then | does not strictly follow from
our premises, i.e.,

drL AP E Y.

However, for the inductive entailment relation we will obtain

1 AP Y.

Our probabilistic first-order logic with the two entailment rela-
tions = and R will provide a principled formalization of inductive
probabilistic reasoning in an expressive logical framework. The next
problem, then, is to define inference methods for this logic. It is well
known that for probabilistic logics of the kind we consider here no
complete deduction calculi exist when probabilities are required to
be real numbers (Abadi and Halpern 1994), but that completeness
results can be obtained when probability values from more general
algebraic structures are permitted (Bacchus 1990a). We will follow
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the approach of generalized probabilities and permit probabilities to
take values in logarithmic real-closed fields (lrc-fields), which pro-
vide a very good approximation to the real numbers. With the Irc-
field based semantics we obtain a completeness result for our logic.
It should be emphasized that with this approach we do not aban-
don real-valued probabilities: real numbers being an example for an
Irc-field, they are, of course, not excluded by our generalized seman-
tics. Moreover, a completeness result for Irc-field valued probabilities
can also be read as a characterization of the degree of incomplete-
ness of our deductive system for real-valued probabilities: the only
inferences for real-valued probabilities that we are not able to make
are those that are not valid in all other Irc-fields. By complementing
the completeness result for Irc-field valued probabilities with results
showing that core properties of real-valued probabilities are actually
shared by all Irc-field valued probabilities, we obtain a strong and
precise characterization of how powerful our deductive system is for
real-valued probabilities.

The main part of this paper (Sections 2 and 3) contains the defi-
nition of our logic %, consisting of a probabilistic representation
language L,, a strict entailment relation = (both defined in Sec-
tion 2), and an inductive entailment relation R (defined in Sec-
tion 3). The basic design and many of the properties of the logic %,
do not rely on our use of probability values from logarithmic real-
closed fields, so that Sections 2 and 3 can also be read ignoring the
issue of generalized probability values, and thinking of real-valued
probabilities throughout. Only the key properties of %, expressed
in Corollary 2.11 and Theorem 2.12 are not valid for real-valued
probabilities.

To analyze in detail the implications of using lrc-fields we derive
a number of results on cross-entropy and cross-entropy minimi-
zation in logarithmic real-closed fields. The basic technical results
here have been collected in Appendix A. These results are used
in Section 3 to show that many important inference patterns
for inductive probabilistic reasoning are supported in %,. The
results of Appendix A also are of some independent mathematical
interest, as they constitute an alternative derivation of basic proper-
ties of cross-entropy minimization in (real-valued) finite probability
spaces only from elementary algebraic properties of the logarith-
mic function. Previous derivations of these properties required
more powerful analytic methods (Kullback 1959; Shore and
Johnson 1980).
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This paper is largely based on the author’s PhD thesis (Jaeger
1995a). A very preliminary exposition of the logic %, was given in
Jaeger (1994a). A statistical derivation of cross-entropy minimiza-
tion as the formal model for inductive probabilistic reasoning was
given in Jaeger (1995b).

1.3. Previous Work

Clearly, the work here presented is intimately related to a sizable
body of previous work on combining logic and probability, and on
the principles of (probabilistic) inductive inference.

Boole (1854) must probably be credited for being the first to
combine logic and probability. He saw events to which probabili-
ties are attached as formulas in a (propositional) logic, and devised
probabilistic inference techniques that were based both on logical
manipulations of the formulas and algebraic techniques for solv-
ing systems of (linear) equations (see Hailperin (1976) for a modern
exposition of Boole’s work).

The work of Carnap (1950, 1952) is of great interest in our
context in more than one respect: Carnap was among the first to
acknowledge the existence of two legitimate concepts of probability,
(in Carnap’s terminology) expressing degrees of confirmation and
relative frequencies, respectively. The main focus in Carnap’s work is
on probability as degree of confirmation, which he considers to be
defined on logical formulas. His main objective is to find a canoni-
cal probability distribution ¢ on the algebra of (first-order) formulas,
which would allow to compute the degree of confirmation c¢(i/e) of
some hypothesis &, given evidence e in a mechanical way, i.e., from
the syntactic structure of 4 and e alone. Such a confirmation func-
tion ¢ would then be seen as a normative rule for inductive reason-
ing. While eventually abandoning the hope to find such a unique
confirmation function (Carnap 1952), Carnap (1950) proves that for
a general class of candidate functions ¢ a form of the direct infer-
ence principle can be derived: if e is a proposition that says that the
relative frequency of some property M in a population of n objects
is r, and & is the proposition that one particular of these n objects
has property M, then c(h/e)=r.

Carnap’s work was very influential, and many subsequent works
on probability and logic (Gaifman 1964; Scott and Krauss 1966;
Fenstad 1967; Gaifman and Snir 1982) were more or less directly
spawned by Carnap (1950). They are, however, more concerned with
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purely logical and mathematical questions arising out of the study
of probabilistic interpretations for logical language, than with the
foundations of probabilistic and inductive reasoning.

In none of the works mentioned so far were probabilistic state-
ments integrated into the logical language under consideration. Only
on the semantic level were probabilities assigned to (non-probabilis-
tic) formulas. This changes with Kyburg (1974), who, like Carnap,
aims to explain the meaning of probability by formalizing it in a
logical framework. In doing so, he develops within the framework
of first-order logic special syntactic constructs for statistical state-
ments. These statistical statements, in conjunction with a body of
categorical knowledge, then are used to define subjective probabil-
ities via direct inference.

Keisler (1985) and Hoover (1978) developed first-order and
infinitary logics in which the standard quantifiers Vx and 3x are
replaced by a probability quantifier Px > r, standing for “for x with
probability at least r”. The primary motivation behind this work
was to apply new advances in infinitary logics to probability theory.

In Al interest in probabilistic logic started with Nilsson’s (1986)
paper, which, in many aspects, was a modern reinvention of (Boole
1854) (see Hailperin (1996) for an extensive discussion).

Halpern’s (1990) and Bacchus’s (1990a,b) seminal works intro-
duced probabilistic extensions of first-order logic for the represen-
tation of both statistical and subjective probabilities within the
formal language. The larger part of Halpern’s and Bacchus’s work
is concerned with coding strict probabilistic inferences in their log-
ics. A first approach towards using the underlying probabilistic log-
ics also for inductive probabilistic reasoning is contained in Bacchus
(1990b), where an axiom schema for direct inference is presented.
Much more general patterns of inductive (or default) inferences are
modeled by the random worlds method by Bacchus, Grove, Halp-
ern, and Koller (Bacchus et al. 1992, 1997; Grove et al. 1992a,b).
By an approach very similar to Carnap’s definition of the confir-
mation function ¢, in this method a degree of belief Pr(¢|y) in ¢
given the knowledge v is defined. Here ¢ and ¢ now are formulas
in the statistical probabilistic languages of Halpern and Bacchus.
As 1, thus, cannot encode prior constraints on the subjective
probabilities (or degrees of belief), the reasoning patterns sup-
ported by this method are quite different from what we have called
inductive probabilistic reasoning in Section 1.1, and what forms
the subject of the current paper. A more detailed discussion of
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the random worlds method and its relation to our framework is
deferred to Section 4.1.

2. THE LOGIC OF STRICT INFERENCE

2.1. Outline

In this section, we introduce the logic %, =(L,, =) consisting of a
language L, for the representation of statistical and subjective prob-
abilities, and an entailment relation = capturing inferences that are
validated by probability calculus. Thus, the nature of the logic %,
will be very similar to that of the logics of Halpern (1990) and Bac-
chus (1990b), and we will follow in our presentation of %, these
previously defined formalisms as far as possible.

The main difference between our logic %, and the logics of
Halpern and Bacchus lies in the definition of terms expressing sub-
jective probabilities. Here our approach is guided by the goal to
later extend the logic %, to a logic %, =(L,, =, F¥) with an addi-
tional entailment relation R for inductive probabilistic inferences.
This inductive entailment relation will be obtained by implement-
ing cross-entropy minimization between the statistical and subjective
probability distribution in the semantic structures for the language.
As we can only speak of the cross-entropy of two probability distri-
butions that are defined on the same probability space, we cannot
follow Bacchus and Halpern in interpreting statistical and subjec-
tive probability terms by probability distributions over the domains
of semantical structures, and distributions over sets of semantic
structures, respectively. Instead, we choose to interpret both statis-
tical and subjective probability terms over the domain of seman-
tic structures. To make this feasible for subjective probability terms,
we have to impose a certain restriction on their formulation: it
will be required that subjective probability terms always refer to
some specific objects or events about which there is some uncer-
tainty. In our introductory example, for instance, all the uncertainty
expressed in the subjective probability statements was attached to
the object “Jones” about whose exact properties we have incom-
plete information. In a somewhat more complicated example, a sub-
jective probability statement may be about the probability that in
an accident “crash010899Madison/5th”, involving drivers “Jones”
and “Mitchell”, driver “Jones” was to be blamed for the acci-
dent. This statement, then, would express uncertainty about the
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exact relations between the elements of the tuple (crash010899Mad-
ison/5th,Jones,Mitchell) of objects and events.

Considering only subjective probability expressions that fit this
pattern allows us to interpret them by probability distributions
over the domain of a semantic structure: we interpret the concrete
objects and events appearing in the subjective probability expression
as randomly drawn elements of the domain. This approach stands
in the tradition of frequentist interpretations of subjective probabil-
ities (Reichenbach 1949; Carnap 1950). For the denotation of such
random domain elements we will use a special type of symbols,
called event symbols, that are used syntactically like constants, but
are interpreted by probability measures.

Another point where we will deviate from the previous app-
roaches by Halpern and Bacchus is in the structure of the prob-
ability measures appearing as part of the semantic structures. In
Halpern (1990) and Bacchus (1990b) these measures were assumed
to come from the very restricted class of real-discrete measures (cf.
Example 2.7). Halpern (1990) states that this restriction is not essen-
tial and briefly outlines a more general approach, perhaps somewhat
understating the technical difficulties arising in these approaches
(as exemplified by our Theorem 2.8). In Bacchus (1990a) a more
general concept of probability distributions is used, allowing arbi-
trary finitely additive field-valued probabilities. We will use a closely
related approach, requiring probabilities to take values in /rc-fields
(Definition 2.1).

2.2. Syntax

The syntax of our logic is that of first-order predicate logic with
three extensions: first, the language of logarithmic, ordered fields
is integrated as a fixed component into the language; second, a
term-forming construction (taken directly from Bacchus (1990b)) is
introduced that allows us to build terms denoting statistical prob-
abilities; and third, a term-forming construction is introduced for
building terms denoting subjective probabilities.

We use two sets of variables in the language: domain variables
ranging over the elements of the domain of discourse, and field
variables ranging over numbers, especially probability values. The
vocabulary

SLOF:{Ov 19 +’ %y < ’ Log}
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of ordered fields with a logarithmic function is considered to belong
to the logical symbols of the language. The non-logical symbols
consist of a set S ={R,Q,...,f,g,...,c,4,...} of relation, func-
tion, and constant symbols, as in first-order logic, and a tuple e =
(e1,...,en) of event symbols.

The language L, (S, e) now is defined by the following rules. Since
in part (f) of the formation rule for field terms a condition on the
free variables of a formula is required, we have to define simulta-
neously with the construction of terms and formulas the set of free
variables they contain. Except for the non-standard syntactic con-
structions we omit these obvious declarations.

A domain-term is constructed from domain-variables vy, vy, ...,
constant and function symbols from S according to the syntax rules
of first-order logic.

Atomic domain formulas are formulas of the form

Rtj...tpy or ti=ty,

where R is a k-ary relation symbol from S, and the t; are domain-
terms.

Boolean operations. If ¢ and v are formulas, then so are (¢ A )
and —¢.

Quantification. If ¢ is a formula and v(x) is a domain-variable
(field-variable), then Jv¢ (Ix¢) is a formula.

Field-terms:

(a) Every field-variable xg, xq, ... is a field-term.

(b) 0 and 1 are field-terms.

(c) If t; and t, are field-terms, then so are (t;-ty) and (t; +ty).
(d) If t is a field term, then so is Log(t).

(e) If ¢ is a formula, and w a tuple of domain variables, then

[#]w

is a field-term. The free variables of [¢], are the free variables of
¢ not appearing in w. A field term of this form is called a sta-
tistical probability term.

(f) If ¢(v) i1s a formula whose free variables are among the domain
variables v, ¢ does not contain any terms of the form prob(...),
and if v/e is an assignment that maps every v €v to some e<e,
then

prob(¢[v/e])

[24]
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is a field-term (without free variables). A field term of this form
is called a subjective probability term.

Atomic field formulas. If t|, t, are field-terms, then t; < t, is an
atomic field formula.

Rule (f) for field terms essentially says that event symbols e, ...,
ey are used syntactically like constant symbols, but are restricted to
only appear within the scope of a prob()-operator. Moreover, sub-
jective probability terms may not be nested or contain free variables.
These are fairly serious limitation that are not essential for the defi-
nition of %, but will be crucially important for the definition of R
in %,.

We may freely use as definable abbreviations (in)equalities like
t1 > h,t =t,1 = 1, and conditional probability expressions like
[¢|¥]w or prob(¢[e]lv[e]). These conditional probability expres-
sions are interpreted by the quotients [¢ A ¥]w/[¥]w, Tespectively,
prob(¢[e] A ¥[e])/prob(¥[e]), provided the interpretations of [y]y,
respectively, prob(y[e]), are positive. Several conventions may be
employed to interpret conditional probability terms when the con-
ditioning expressions are assigned probability zero. We will not
explore this issue here and refer the reader to Bacchus (1990b),
Halpern (1990), and Jaeger (1995a) for alternative proposals.

To illustrate the use of the language L,, we encode some of the
example sentences of Section 1.1. We use a vocabulary that contains
two unary predicate symbols D and M that partition the domain into
elements of the sorts driver and mileage, respectively. Another unary
predicate symbol IIA stands for “involved in accident”, and a unary
function am maps drivers to their annual mileage. Also we use con-
stants 10, 15, ... for specific mileages (in thousands), and a binary
order relation < on mileages (this relation < defined on the domain
is to be distinguished from the relation < defined on probability
values). Finally, there is a single event symbol jones. Statement (1)
can now be formalized as

9) 1 :=[IIA(d)|D(d) A 10 < am(d) < 20]; = 0.027.

Statement (3) becomes

(10) @3 :=prob(IIA(jones))=0.027.

[25]



196 MANFRED JAEGER

2.3. Semantics

Key components of the semantic structures that we will use to
interpret L, are finitely additive probability measures with values
in logarithmic real-closed fields. We briefly review the concepts we
require.

DEFINITION 2.1. 4n Syop-structure 3=(F,0,1,+, -, <, Log) over
a domain F is a logarithmic real-closed field (lrc-field) if it satisfies
the axioms LRCF consisting of

(1) The axioms of ordered fields.
(1) An axiom for the existence of square roots

Vxdy(0 < x — y>=x).

(ii1) A schema demanding that every polynomial of uneven degree has
a root

Yyo.o Vn1Ax(o+y1-x+- -+ yu_1 'Xn71+x'120),
n=1,3,5,...

(V) Vx>0 x#1—Logx)<x—1.
(vi) The approximation schema

Vxe(0,1] ¢,(x) < Log(x) < p,(x), n=1,2,...

where
—1)2 _1 3 _1 n
q,,(x):z(x—l)—(x 21) +(x 3 ) _...+(_1)n*1u
n
_ 1\n+l
e ETT
X
_1)2 _1\3 1\
o= -1y = & 21) NG 3)1) R i
n

A structure over the vocabulary Sor:={+, -, <, 0, 1} that satisfies
the axioms RCF consisting of (i)—(iii) alone is called a real-closed
field. By classic results in model theory, RCF is a complete axiomat-
ization of the Spg-theory of the real numbers. In other words, every
first-order Spp-sentence ¢ that is true in R also is true in every other
real-closed field (see Rabin (1977) for an overview). To what extent
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similar results hold for logarithmic real closed fields is a long-stand-
ing open problem in model theory (there studied w.r.t. (real-closed)
fields augmented by an exponential, rather than a logarithmic, func-
tion (see e.g., Dahn and Wolter (1983)).

DEFINITION 2.2. Let M be a set. An algebra over M is a collection
A of subsets of M that contains M, and is closed under complementa-
tion and finite unions. If M is also closed under countable unions, it is
called a o-algebra. If U is an algebra on M, and ' an algebra on M,
then the product algebra A x ' is the algebra on M x M’ generated
by the sets A x A (A €A, A e ).

DEFINITION 2.3. Let 2 be an algebra over M, § an lrc-field. Let
Ft:={x €F|0 < x}. A function

P: A —>F*

is an F-probability measure iff P(#)=0, P(M)=1, and P(AUB) =
P(A)+ P(B) for all A,B €A with ANB=10. The elements of 2
also are called the measurable sets. The set of all probability measures
with values in F on the algebra 2l is denoted by

Apd.

Thus, even when the underlying algebra is a o-algebra, we do
not require o-additivity, because this would usually make no sense
in arbitrary Irc-fields, where infinite sums of non-negative numbers
need not be defined. If 2 is a finite algebra with n atoms, then Ap2d
can be identified with

Api={(x1,....x) €F'x >0, x;=1}.

If 20 is a subalgebra of 2, and P € Ap2l, then P [’ denotes the
restriction of P to 2, i.e., a member of Ap2l’. By abuse of notation
we also use P [ to denote the marginal distribution on 21’ when
2’ is a factor, rather than a subalgebra, of 2, i.e, A=A x A" for
some 2A”.

Semantic structures for the interpretation of L, (S, e) are based on
standard model theoretic structures for the vocabulary S, augmented
by probability measures for the interpretation of probability terms.

[27]
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The basic form of a probabilistic structure will be

M= (M, I, S, (an’ Pn)neN» Qe)»

where (M, I) is a standard S-structure consisting of domain M and
interpretation function I for S, J is a logarithmic real closed field,
the (2, P,) are probability measure algebras on M", and Q. is a
probability measure on e (we use |e], |v],etc., to denote the num-
ber of elements in a tuple of event symbols e, variables v, etc.).

Statistical probability terms [¢], will be interpreted by Py (A)
where A is the set defined by ¢ in M'*l. The measure P,, thus,
is intended to represent the distribution of a sample of n inde-
pendent draws from the domain, identically distributed accord-
ing to P; (an “iid sample of size n”). In the case of real-valued
o-additive measures this would usually be achieved by defining P,
to be the n-fold product of P;, defined on the product o-alge-
bra 2 x --- x 2, (n factors). A corresponding approach turns out
to be infeasible in our context, because the product algebra 2(; x

- x 2y usually will not be fine-grained enough to give seman-
tics to all statistical probability terms [¢],. In order to ensure that
the sequence (2, P1), (R, P»), ..., nevertheless, behaves in several
essential aspects like a sequence of product algebras and product
measures, we explicitly impose three coherence conditions: homoge-
neity, the product property, and the Fubini property. These are essen-
tially the same conditions as can be found in Hoover (1978), there
summarily called Fubini property. Bacchus (1990a) requires homo-
geneity and the product property only.

Homogeneity. For all n, A €2, and permutations 7 of {1,...,n}:

7m(A):={malac A} e,, and P,(w(A))=P,(A).

Homogeneity expresses the permutation invariance of iid sam-
ples: if we sample two drivers from our example domain, for
instance, then the probability that the first one drives a Toyota, and
the second one a Ford is the same as the probability that the first
one drives a Ford, and the second one a Toyota.

Product property. For all k,/eN:Ae2; and B e®; implies A x
BeU, and Pr(A x B)= P (A)- P(B).

The product property expresses independence of samples. For an
example let k=1=1, A comprise the set of Toyota drivers, and B
comprise the set of Ford drivers. Then P;(A)(P;(B)) is the probabil-
ity of sampling a Toyota (Ford) driver in a single draw. P,(A x B) is
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the probability of first drawing a Toyota driver, then a Ford driver,
in a two-element sample. When sampling is iid, P>(A x B) must be
equal to P (A)Pi(B).

For the formulation of the last coherence condition we first intro-
duce some notation for sections of sets: Let I C{l,...,n} with I #{
and I':={1,...,n}\I. Let ACM" and a e M!. Then the section of
A in the coordinates I along a is defined as

ol(A):={beM"|(a,b) € A}.

Fubini property. For all n e N, I C{l,...,n} with 1 < |I| =:k,
Ae,, and aeM':

(11) o, (A) €Ay
for all r €0, 1]:

(12) Ay zri=faeM'|P, (0] (A) > r}e
and

(13)  Pu(A) > rP(Ar>,).

Furthermore, we require (13) to hold with strict inequality for the
set A; ., defined by replacing > by > in (12).

The Fubini property expresses a fundamental “commensurabil-
ity” property of product measures in different dimensions. For
standard o-additive measures it plays a vital role in the theory of
integration. It is best illustrated by a geometric example: obviously,
if a geometric figure A in the plane contains a rectangle with sides
of lengths s and r, then the area of A must be at least r-s. This
is essentially the defining property of area as the product measure
of one-dimensional lengths. Furthermore, the lower bound r -s also
holds when A only contains a “distorted rectangle” of dimensions
r x s, as illustrated in Figure 1. The Fubini property establishes the
lower bound of r-s for the measure of A from a condition that fur-
ther generalizes the property of containing a “distorted rectangle”.

We are now ready to define our semantic structures.

DEFINITION 2.4. Let S be a vocabulary, e a tuple of event symbols.
A probabilistic structure for (S, e) is a tuple

m= (M7 19 Sa (Q[nﬂ Pn)neN, Qe)’

[29]
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Figure 1. The Fubini property.

where M is a set (the domain), I is an interpretation function for S over
M, § is a lrc-field, (U, P,) is a measure algebra on M" (n € N), such that
the sequence (A, P,)nen satisfies homogeneity, the product property, and
the Fubini property, and Q. is a probability measure on .

Now let a probabilistic structure 9t for (S, e) be given, let y be a
variable assignment that maps domain-variables into M and field-
variables into . The notation y[v/a, x/r] is used for the variable
assignment that maps v to @, x to r, and for all other variables is
the same as y.

We now need to define the satisfaction relation between (9N, y)
and L,-formulas. Due to the possible non-measurability of L,-defin-
able sets, this relation may only be partial. In detail, we define a
partial interpretation that maps an (S, e)-term t to its interpretation
(O, y)(t) in M (if it is a domain term), or in F (if it is a field term).
In parallel, a relation |= is defined between (9, ¥) and L, (S, e)-for-
mulas ¢. This relation,too, may be only partial in the sense that it is
possible that neither (9, y) =¢, nor (M, y) =—o.

Domain-terms. For a domain-term t, the interpretation (91, y)(¢)
is defined just as in first-order logic. Note that t cannot contain any
field-terms as subterms.

Atomic domain formulas. If ¢ is an atomic domain formula then
the relation (90, ) =¢ is defined as in first-order logic.
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Boolean operations. The definition of (91, y) =¢ for ¢ =y Vv x
and ¢ =— is as usual, provided that = is defined between (I, )
and the subformulas v, x. Otherwise = is undefined between
(O, ¥) and ¢.

Quantification. Let ¢ (v, x)=3wy (v, w, x). Then

M, y)Ee@, x) iff JaeMON, ylw/a) =y @, w,x).

Similarly for quantification over field variables and universal
quantification.
Field-terms. Let t be a field-term.

(a) t=x. Then (O, y)(t) =y (x).

(b) t=0. Then (9, y)(t) =0. Similarly for t= 1.

(¢) t=t;+ta. Then (M, y)() =N, y)(t1) + N, y)(t) if (N, y)(t1)
and (N, y)(ty) are defined. (I, y)(t) is undefined otherwise.
Similarly for t=t;-t,.

(d) t = Log(t"). Then (M, y)(t) = Log((M, y)(t')) if (M, y)(t) is
defined. (9N, y)(t) is undefined otherwise.

(e) t=[¢p (v, w, x)]w. Then

(M, y) (V) = P ({a|(M, y[w/a]) = (v, w, x)})

if {a|N, y[w/a]) =@ (u, w, x)} eAjy;; N, ¥)(1) is undefined oth-
erwise.
(f) t=prob(¢[v/e]). Then

M, y)(O) = Qc({al(M, y[v/a]) E¢(v)})

if {a|OM, y[v/a]) E¢(v)} eAje;; M, y)(t) is undefined otherwise.
Atomic field formulas. Let ¢ =t; < t;. Then (9N, y) =¢ iff(MN, )
(t1) and (9N, ) (tp) are defined, and (9, y)(t;) < (N, y)(t2).

DEFINITION 2.5. A probabilistic structure M is sufficient if the
relation (M, y) =¢ is defined for all y and all ¢ € L,.

In other words, 91 is sufficient if all L,-definable sets are measur-

able. We define semantic entailment with respect to sufficient struc-
tures only.

DEFINITION 2.6. For ® CL,, ¥ € L, we write ® = if for all suffi-
cient probabilistic structures 9: (M, y) = implies M, y) =¢.
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Because of the importance of definability, we introduce a some-
what more compact notation for sets defined by formulas: if ¢ is
an L,(S, e)-formula, 9 a probabilistic structure, y a variable assign-
ment, and v a tuple of n distinct domain variables, then we write

(14) M, y,v)(p):={aec M"|(M, y[v/a)) =}

Furthermore, when ¢ =¢ (v, w, x), y(w)=>5, and y(x)=r, then we
also denote (14) by (O, v)(¢ (v, b, r)).

It can be very difficult to verify sufficiency for a given structure
M. In fact, the only class of examples of probabilistic structures for
which sufficiency is easily proved is the following.

EXAMPLE 2.7. Let S be a vocabulary, e=(e;,...,ey) a tuple of
event symbols. Let (M, I') be a standard S-structure; for i eN let @, €
M, b,‘ EMN, Pi,qi R with Zpl :qu =1. Let an :2M” for all n e
N, and define

P.(A)= > piy-pi, (ASM")

and

Qc(A)=> g (AcMY).

b[GA

It is easy to see that (2, P,),en satisfies the coherency conditions.
Moreover, sufficiency is trivially satisfied, because every subset of
M™ is measurable. We refer to structures of this form as real-discrete
Structures.

2.4. Probabilistic Reasoning in %,

The logic %, supports reasoning with statistical and subjective prob-
abilities as two separate entities, and thus has much in common
with Halpern’s (1990) logic .%;5. However, due to the domain distri-
bution semantics of subjective probabilities, %), exhibits some dis-
tinguishing properties. In this section, we will discuss some of these
properties. First, however, we turn to purely statistical reasoning,
and illustrate by an example the role of the coherence conditions.
Let {D,M,...} be the vocabulary introduced in Section 2.2 for
encoding our introductory example. To provide the basis for some
inferences in %,, we first axiomatize some aspects of the intended
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meaning of the given symbols. Notably, we want < to be an order
relation on M, which we can formalize in L, by a (standard first-
order) sentence ¢<. Also, according to the intended meaning of am,
this function takes values in M

Yow(am(v) =w — M(w)) =: Pan.
Now consider the statistical probability term
[am(d) < am(d")]a.a

(where <, naturally, is shorthand for “< and not =”), which repre-
sents the statistical probability that of two randomly chosen drivers
d and d’, d has a lower annual mileage than d’. We want to derive
that 1/2 is an upper bound for this probability. For this let 9t be a
sufficient probabilistic structure for the given vocabulary. Then

(15) A=, (d,d"))(am(d) < am(d"))
={(a,b) e M x M|am(a) < am(b)} €2A,.
Also, the permutation of A
(16) A':={(a,b)eM x M|am(b) < am(a)}

belongs to 2. If 91 is a model of ¢p< A @ay, then A and A’ are dis-
joint, and by homogeneity P,(A) = P,(A’). It follows that P,(A) <
1/2. Hence, we can infer in .%,:

(17)  ¢< A danl =[am(d) <am(d)]ga < 1/2.
Next, we show that from ¢< A ¢, We can derive
(18)  3d[am(d)] = [am(d)]a > 1/2,

i.e., there exists a driver whose annual mileage is at least as great
as that of 50% of all drivers (an “at least median mileage”-driver).
To derive (18) we have to appeal to the Fubini property: let 9t be
a model of ¢< A ¢ay, and assume that

(19) MEVdan(d) <an(d)]s <1/2,1e.,

(20) MEVd[am(d) <am(d')]s > 1/2.

Now consider again the set A defined by (15). Then, according to
(20),

A1,>1/2:{aeM|P1({beM|a<b})>1/2}:M.
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By the Fubini property this leads to
Py(A)> 1/2P (M) =1/2,

a contradiction to (17). Hence (20) cannot hold, and (18) follows
from ¢< A Pam.

We now turn to reasoning with subjective probabilities. To sim-
plify notation, we assume in the following that there is only one
event symbol e in our vocabulary, i.e. |e¢|=1.

Even though e is interpreted by a probability distribution over
the domain, the logic does support the intuition that e, in fact,
stands for a unique domain element, because

21) prob(EIzlw(ez w))=1

is a tautology in %, (here 3=!' is an abbreviation for ‘there exists
exactly one’). To see that (21) is indeed valid, it only must be real-
ized that the interpretation of the formula 3='w(v=w) is always M,
and so must be assigned probability 1 by Q..

Now let ¢ (w) be a formula. Then

(22)  Vw(@w)Vv-¢(w))

is a tautology. It might now appear as though from (21) and (22)
one should be able to infer

(23) ¢V —9(e),

and hence

(24)  prob(¢(e)) =0V prob(¢(e)) =1.

This would mean that reasoning with subjective probabilities
reduces to trivial 0-1 valued probability assignments that sim-
ply mirror truth value assignments. This is not the case, however,
because (23) is an expression that is not allowed by the syntax of
%,, and hence cannot be used for deriving (24). This changes if we
introduce a standard constant symbol e as an alternative name for
e via the axiom

(25) prob(e=e)=1.
Since Yw(w =e — (¢ (w) <> ¢ (e))) is a tautology, we have

(26) prob(e=e— (¢(e) <> ¢(e))) =1

and (24) becomes an immediate consequence of (25) and (26).
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We thus see that %, in this way supports two views on single
case probabilities: as long as individual events are only represented
by event symbols, the probabilities of their properties can be iden-
tified with frequencies obtained by repeated sampling according to
Q., which means that they are only constrained by the conditions
of a coherent domain distribution. If the single case nature of e is
made explicit by an axiom of the form (25), the logic enforces the
view that the probability for a proposition relating to a single case
event can only be 0 or 1, according to whether the proposition is
true or false. Both these views are shades of frequentist interpre-
tations of single case probabilities: the latter is the strict frequen-
tist view of von Mises (1957), whereas the former is a less dogmatic
frequentist perspective in which single case probabilities are admit-
ted as meaningful, but are given an empirical interpretation (Rei-
chenbach 1949, Jaeger 1995b).

Limitations on possible subjective probability assignments can be
imposed in %, also by restricting the sampling distribution Q. in
less obvious ways than the axiom (25). Consider the sentence

27) F=lyPresident(v) A prob(President(e)) =1
AVv(President(v) — (Republican(v) <> —=Democrat(v))).

The first two conjuncts of this sentence tie the interpretation of e to
the one element interpretation of the predicate President in very
much the same way as (25) tied it to the one element interpretation
of e. As before, we thus obtain that properties of e can only have
0-1 probabilities, and hence (27) is inconsistent with

(28) prob(Republican(e)) =1/2 A prob(Democrat(e)) =1/2.

This may seem counterintuitive at first sight, as (27) and (28) seem
to express a meaningful subjective probability assessment. On the
other hand, however, it also seems natural to demand that for any
formula ¢ (x) the implication

(29)  prob(¢(e)) >0 =3Tve(v)

should be valid, since we should not be able to assign a non-
zero probability to e having the impossible property ¢. If, now,
(27) and (28) were jointly consistent, then (29) would be violated
in some model with either ¢ (v) =President(v) A Democrat(v), or
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¢(v) = President(v) A Republican(v). Thus, the minimal consis-
tency requirement between domain knowledge and subjective prob-
ability assessment as expressed by (29) already forces the joint
inconsistency of (27) and (28).

A somewhat more careful modeling resolves the apparent con-
flict: by introducing a time parameter into our representation, we
can make the more accurate statement that there only exists a sin-
gle president at any given point in time, and that e refers to the next
president

Vt Time(t) — 3=! vPresident(v,?)
(30) Aprob(President(e, next))=1.

Here ‘next’ must be another event, not a constant symbol. Now (28)
is consistent with our premises since Q. next can be any distribution
that samples presidents at different points in time.

2.5. Sufficient Structures

So far, the only type of sufficient probabilistic structures we have
encountered are the real-discrete structures of Example 2.7. For
many interesting theories one can find models that belong to this
class. For instance, all our example sentences (1),(3), etc. have real-
discrete models. This is not always the case, though. Consider the
sentence

¢ :=Vo[v=w], =0,

which explicitly states that no single element carries a positive prob-
ability mass. Clearly ¢°°™ does not have a real-discrete model. Prob-
abilistic structures that do satisfy ¢ we call continuous structures.
Do sufficient continuous structures exist? The answer is yes. An
explicit construction of sufficient continuous structures for the spe-
cial case that S only contains unary relation symbols is given in Jae-
ger (1995a). For more expressive vocabularies it becomes extremely
difficult to verify sufficiency in an explicit construction. In partic-
ular, as the following theorem shows, we cannot follow the exam-
ple of real-discrete structures, and try to obtain sufficiency simply by
making every set measurable.

THEOREM 2.8. There does not exist a sufficient continuous proba-
bility structure MM with A, =2M" for all n.
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Proof. We show the stronger result that we cannot even construct
the first two elements (2™, P;), 2™, P,) of a sequence (2M", P,)nen
such that the coherency conditions hold for these two measure alge-
bras.

For this let M be a set, P, a continuous probability measure
on 2™ P, a permutation invariant probability measure on 2M* such
that P, and P, satisfy the product property. We show that there
exists an A € M? with Py(c!(A)) =0 for all a e M, and P,(A) >0,
thus providing a counterexample to the Fubini property.

Let A be the cardinality of M. Let T" be the set of ordinals ¥ < A
that have the following property: there exists a sequence of pairwise
disjoint subsets {E, C M|v ordinal, v <k} with

31) Vv<k:P(E,))=0 and P (U, E))>0.

" is non-empty, because L eT.
Let p be the minimal element in T'; let {E,|v < p} be a sequence
for p with (31). For each ordinal v < p let

E,:=Ug_,Ey.

By the minimality of p in I, we have Pi(E,)=0 for all v<p. Now
define

A0:=Uv<p(Ev X Ev),
Al::Uv<p(Eu X Ev),
B:=U,_,E,.

Let a € M be arbitrary. If a¢ B, then 0! (Ag)=0!(A1)=0. For ae B
there exists exactly one v < p with a € E,, so that aal (Ag) = E, and
o}(A))=E,. Thus, for all ae M, Pi(c}(A¢)) = P1(c}(A}))=0.

Now consider any (a,b) € B x B where ac E,,be E|. If v>1'
then (a,b) € Ag. For v=v' we have (a,b) € Ay, and if v <V, then
(a, b) belongs to the permutation 7w Ag ::UK,,(EV x E,) of Ag. Thus,

BxB=AyUmrAyUA,.
Since r := P(B) > 0, and therefore P»(B x B)=r>>0, by the per-

mutation invariance of P,, it follows that P>(Ag) >0, or P,(A;) > 0.
Hence, at least one of Ay and A; violates the Fubini property. O

[37]
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2.6. Reduction to First-Order Logic

The previous section has highlighted the difficulties in the model
theory of %,. In this section, we provide results that, on the other
hand, provide powerful tools for the analysis of %,. These tools are
obtained by showing that %), can be reduced to standard first-order
logic. This reduction is based on the observation that a statistical
probability term [¢ (v, w, x)], maps tuples (a,r) e M x F*l to ele-
ments s € F, and thus behaves essentially like a standard function
term f(v,x) over a domain M UTF. A similar observation applies to
subjective probability terms. To reduce %, to first-order logic, one
can define a translation from %), into the language L;(S*) of first-
order logic over an expanded (infinite) vocabulary S* O S. In this
translation, probability terms are inductively replaced by standard
function terms using new function symbols. This syntactic transla-
tion is complemented by a transformation between sufficient prob-
abilistic structures and standard first-order structures. Finally, the
class of standard first-order structures that correspond to sufficient
probabilistic structures under such a transformation can be axio-
matized by a first-order theory AX. We then obtain the following
result.

THEOREM 2.9. Let S be a vocabulary. There exist

e a vocabulary $*D S,
e a recursively enumerable set of axioms AX C L;(S*),
e computable mappings

t:L,(S) — L;(S),
(L y(S)) = Ly(S),

such that t~'(¢(¢)) =0¢,
e transformations

T: M= MM* (M a sufficient probabilistic S-structure,
M* a S*-structure with M* = AX),
T71:9— 9! (O a S*-structure with NEAX,

M~ a sufficient probabilistic S-structure),
such that 7-1(T () =M,

[38]
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so that for all ¢ € L,(S), all sufficient probabilistic S-structures 91,
and all S*-structures 9= AX:

(32) MESiff TON) =t(¢) and Ni=t(p) iff T-'(N) =¢.

For the detailed proof of this theorem the reader is referred to
Jaeger (1995a). We obtain several useful corollaries. The first one
reduces semantic implication in %), to first-order entailment.

COROLLARY 2.10. For all ®U{¢}C L ,(S):
PE=¢ iff t(PIUAX =1(d).

Using this corollary, one can easily transfer compactness of first-
order logic to %),.

COROLLARY 2.11. &, is compact.

As an application of compactness consider the L,-theory
®:={§,|n eN}UIx > O0Vv[v=w], =x,

where §, is a standard first-order sentence that says that the domain
contains at least n elements. A model of ® thus is an infinite struc-
ture in which every singleton has the same positive probability mass.
Since every finite subset of @ is satisfiable (by a finite domain real-
discrete structure), we know by Corollary 2.11 that & is satisfiable.
However, @ is clearly not satisfiable by a structure with real-valued
probabilities: the probability of the singletons in a model of ® must
be some infinitesimal. Thus, ® also provides an example of what we
lose in terms of semantic strength by allowing probabilities to be
Irc-field-valued, not necessarily real-valued, and shows that Corol-
lary 2.11 cannot hold when we limit ourselves to real-valued prob-
ability structures.

Finally, we obtain as a corollary to Theorem 2.9 a completeness
result.

THEOREM 2.12. There exists a sound and complete proof system
Jfor &,

[39]
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Again, this corollary is in marked contrast to what one obtains
when probabilities are required to be real-valued, in which case no
complete proof system can exist (Abadi and Halpern 1994).

3. THE LOGIC OF INDUCTIVE INFERENCE

3.1. Inductive Reasoning by Cross-Entropy Minimization

The statistical knowledge expressed in our example sentences (1),(4)
and (6) can be expressed by the L,-sentences

(33)  ¢1:=[IIA(d)|D(d) A 10 < am(d) < 20], = 0.027,
(34)  ¢u:=[IIA(d)|D(@) A 15=<am(d) <25], =0.031,
(35)  de:=[IIAd)|D(d) A 15 < am(d) < 20], €[0.027, 0.031].

The belief about Jones expressed in (2) can be expressed by
(36) ¢ :=prob(D(jones) A10<am(jones)<20)=1.

As discussed in Section 1, it seems reasonable to infer from ¢ A ¢,
(37)  ¢3:=prob(IIA(jones))=0.027.
However, this inference is not valid in .%,, i.e.,

O1 NG F P3.

This is because in a probabilistic structure the statistical and sub-
jective probability terms are interpreted by the measures P; and
Q jones, Tespectively, and the constraint ¢; on admissible statisti-
cal measures does not constrain the possible choices for Q jones.
Moreover, it would clearly not be desirable to have that ¢; A ¢»
strictly implies ¢3, because then ¢; A ¢ would be inconsistent with
prob(—IIA(jones)) =1, i.e., the knowledge that Jones will, in fact,
not be involved in an accident. Hence, if we wish to infer ¢; from
¢1 A ¢o, this can only have the character of a mon-monotonic, or
defeasible, inference, which may become invalid when additional
information becomes available. Our aim, then, will be to augment
the logic %, with an additional non-monotonic entailment relation
ke for which

G AP Rd3,  but ¢ Ay Aprob(—IIA(jones))=1F ¢s.

[40]
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As a second example for the intended inference relation R con-
sider the formula

(38)  ¢a.5:=prob(D(jones) A15<am(jones) <20)=1.

As argued in Section 1, our inductive inference relation then should
satisfy

@6 A 2. s prob(IIA(jones)) €[0.027, 0.031].

Adding that these should be the sharpest bounds that | allows us
to derive for prob(IIA(jones)), this example illustrates an important
aspect of the intended relation f : it will not be used to make any
default assumptions about the statistical distribution in the sense
that, for example, we could derive

b6 [TIA(d)|D(d) A 15 < am(d) < 20]; =0.029

(i.e., assuming without further information that the correct sta-
tistical probability is given by the center point of the admissible
interval, or else, maybe, by 0.031 as the value closest to 0.5). Only
inferring the bounds [0.027, 0.031] for prob(IIA(jones)) means that
we take every admissible statistical distribution into consideration,
and apply the inductive inference relation |~ to the subjective dis-
tribution alone with respect to each of the statistical possibilities.

As an example where the given information on Jones is not
deterministic consider the sentence

(39)  ¢39:=prob(D(jones) Al0=<am(jones)<15)=0.4
Aprob(D(jones) A15<am(jones) <20)=0.6.
Here Jeffrey’s rule is applicable, because the two constraints in (39)
are on disjoint subsets. Jeffrey’s rule, now, leads to the inductive
inference
(40) @39k prob(IIA(jones))=0.4[IIA(d)|D(d) A10=<am(d)15],
+0.6[IIA(d)|D(d)A15<am(d) <20],.
As the statistical information ¢; A ¢¢ implies the bounds [0, 0.027]
and [0.027, 0.031] for the two conditional probabilities on the right-
hand side of (40), we obtain
(41) P APs APk prob(IIA(jones))€[0.6-0.027,0.4-0.027
+0.6-0.031]
=[0.0162,0.0294].

[41]
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While the step from direct inference to Jeffrey’s rule is very easy, the
step to the general case where subjective probability constraints can
be on arbitrary, non-disjoint, sets is rather non-trivial. The guiding
principle both in direct inference and Jeffrey’s rule can be seen as
the attempt to make the subjective probability distribution as simi-
lar as possible to the statistical distribution. To follow this principle
in general requires to be able to measure the similarity, or distance,
between probability distributions. A very prominent distance mea-
sure for probability distributions is cross-entropy: if P=(pi,..., pn)
and Q=(qi,...,q,) are two probability measures on an n-element
probability space, and p; =0 implies ¢; =0 for i=1,...,n (ie, Q
is absolutely continuous with respect to Q, written Q < P), then the
cross-entropy of Q with respect to P is defined by

42) CEQ.P):=)4q Log%.
i=1 t

pi>0

Given a measure P € A2l with 2 a finite algebra, and a subset
J C A2, we can define the CE—projection of P onto J

43) T,(P):={QeJIQ<KP,VQ' eJ:CE(Q, P)>CE(Q, P)}

The set I1,;(P) can be empty (either because J does not contain any
QO with Q « P, or because the infimum of {CE(Q’, P)|Q' € J} is not
attained by any Q € J), can be a singleton, or contain more than
one element.

To use CE in modeling inductive probabilistic reasoning, we
identify the distributions P and Q in (42) with the statistical and
subjective probability distributions, respectively. We can then for-
malize the process of inductive probabilistic reasoning as follows: if
K 1is the set of statistical measures consistent with our knowledge, J
is the set of subjective measures consistent with our already formed,
partial beliefs, then we will sharpen our partial beliefs by going from
J to

I, (K) :=U{I1,(P)|PeK}C J,

i.e., by discarding all subjective distributions that are not as close as
possible to at least one feasible statistical distribution.

Is this an adequate formalization of inductive probabilistic rea-
soning? Clearly, this question, being non-mathematical in nature,

[42]
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does not admit of an affirmative answer in the form of a strict cor-
rectness proof. However, it is arguable that, short of such a proof,
the justification for using cross-entropy minimization is as strong as
it possibly can be.

A first justification consists in the observation that cross-entropy
minimization does indeed generalize Jeffrey’s rule: if J is defined
by prescribing values for the elements of a partition, then IT;(P) is
obtained by applying Jeffrey’s rule to P and these values. This prop-
erty, however, is not unique to cross-entropy minimization (Diaconis
and Zabell 1982). Justifications that identify cross-entropy minimi-
zation as the unique method satisfying certain desirable properties
can be brought forward along two distinct lines: the first type of
argument consists of formal conditions on the input/output rela-
tion defined by a method, and a proof that cross-entropy minimiza-
tion is the only rule that will satisfy these conditions. This approach
underlies the well-known works both by Shore and Johnson (1980,
1983) and of Paris and Vencovska (1990, 1992). A typical condition
that will be postulated in derivations of this type can be phrased in
terms of inductive inference in L, as follows: if the input consists of
separate constraints on two event variables, e.g.,

(44) prob(10=<am(jones)=15) <0.7Aprob(IIA(mitchell))<0.1,

then the output, i.e., the selected joint subjective distribution for
Jones and Mitchell, should make the two variables independent, and
therefore satisfy e.g.,

(45) prob(IIA(jones) A10=<am(mitchell))
=prob(IIA(jones))-prob(10 Xam(mitchell)).

Abstracting from such particular examples, this independence prin-
ciple becomes a general property of the inductive entailment opera-
tor k2, which can be formally stated as in Theorem 3.8 (and which
corresponds to the system independence property of (Shore and
Johnson 1980), respectively, the principle of independence of Paris
(1994)). A second condition, or desideratum, for an inductive infer-
ence rule is the conditional reasoning property, expressed in Theo-
rem 3.9 (which is closely related to the subset independence property
of Shore and Johnson (1980)). Variants of these two properties form
the core of axiomatic derivations of CE-minimization as the formal
rule for inductive probabilistic inference.

[43]
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A second type of justification for the minimum CE-principle has
been developed in Jaeger (1995a,b). This justification follows the
tradition of frequentist interpretations for single case probabilities
as predicted frequencies in a sequence of trials (Reichenbach 1949,
Section 72; Carnap 1950, p. 189fY).

Since single case probabilities often cannot be associated with
observable frequencies in actual, repeated, physical experiments,
such trials may only take an imaginary form, i.e., be carried out as a
thought experiment (Jaecger 1995b). For example, to assess the prob-
ability that the driver of the car, the wreckage of which we have
just seen at the roadside, has survived the crash, we may mentally
reenact the accident several times, and take a mental count of how
often the driver comes away alive. We now make two assumptions
about how the thought experiment is performed. The first assump-
tion is that the sampling in the thought experiment is according to
our statistical knowledge of the domain. If, for example, we hap-
pen to know exact statistics on the average speed of vehicles on
this road, the prevalence of seat-belt use, the frequency of drunk
driving, etc., then our mental sampling will be in accordance with
these known statistics. The second assumption is that already exist-
ing constraints on the subjective probability being assessed are used
to condition the statistical distribution over possible samples on fre-
quencies consistent with these constraints. If, for example, we hap-
pen to believe that with probability at least 0.7 the driver in the
accident was drunk (this being well above the statistical probabil-
ity of drunk driving), then we condition the distribution over pos-
sible samples of repeated accidents on the event of containing at
least 70% incidences of drunk driving. More loosely speaking, we
perform the mental sampling according to the underlying statistical
distribution, but bias the result so as to contain at least 70% drunk
drivers.

This semi-formal thought experiment model can be translated
into a precise statistical model, and it can then be proven that
according to this model the predicted frequencies must be exactly
those that are obtained by CE-minimization (Jaeger 1995b).

As an example for a result obtained by CE-minimization in a sit-
uation where Jeffrey’s rule no longer applies, consider the sentence

(46)  ¢46:=prob(10 <am(jones) <20)=0.5
Aprob(15=<am(jones) <25)=0.7.

[44]
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This sentence imposes probability constraints on the two non-dis-
joint sets defined by 10 < am(v) < 20 and 15 < am(v) < 25. As
usual, we want to derive a probability estimate for ITA(jones). It
is another distinctive feature of CE-minimization that this estimate
can be derived in two steps as follows: in the first step probability
estimates for Jones belonging to the elements of the partition gener-
ated by the sets appearing in (46) are computed (by CE-minimiza-
tion). In the second step the probability assignments found for the
partition are extended to other sets by Jeffrey’s rule, which now is
applicable. For example ¢4¢ the relevant partition consists of four
different sets of possible annual mileages, for which we might have
the following statistical information:

(47) [10 < am(d) < 15],=0.4,

(48) [15 < am(d) < 20], =0.3,

(49) [20 < am(d) < 25]y = o 1,
]

(50) [am(d)<10Vv25<am(d)];=

To obtain the probability estimates for Jones’s membership in the
elements of the partition, we have to compute the distribution
0 = (g1, 92,93, q4) that minimizes CE(-, P) with respect to P =
(0.4,0.3,0.1,0.2) under the constraints g; +¢>=0.5 and ¢» + g3 =
0.7. This computation is a non-linear optimization problem, and
yields the (approximate) solution

(51) Q=(0.128...,0.37...,0.329...,0.171...),

meaning that in the first step we have made, for example, the induc-
tive inference

(52) prob(10=<am(jones) <15) € (0.128,0.129).

Given the probabilities for the four disjoint reference classes we
can now apply Jeffrey’s rule, and obtain bounds for prob(IIA(jones))
in the same way as (41) was derived from (39) and the relevant sta-
tistical information.

3.2. Preferred Models

Having identified cross-entropy minimization as the formal rule we
want to employ for inductive reasoning, we want to use it as the
basis for inductive entailment ' in %),.

[43]
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Our plan is to implement C E-minimization by developing a pre-
ferred model semantics (Shoham 1987) for L,: for a given L,-sen-
tence ¢ we will single out from the set of all models of ¢ a subset
of preferred models. A model M=(M, ..., (,, P,)., Qc) is going to
be a preferred model if the subjective probability measure Q. mini-
mizes cross-entropy with respect to the measure Py that describes
the statistical distribution of a random sample of |e| domain ele-
ments. An inductive entailment relation ¢ then holds if ¥ is true
in all preferred models of ¢.

Several difficulties arise when we put this plan into practice,
because we have defined cross-entropy by (42) only for real-valued
measures on finite algebras. As we are now dealing with lrc-field
valued measures on infinite algebras, the concepts of cross-entropy
and CE-minimization have to be generalized. Furthermore, we have
to ascertain that this generalization retains those essential proper-
ties of cross-entropy in R on which the justification of the minimum
CE-principle is based. For instance, we will have to check that the
generalized minimum CE-principle still has the independence prop-
erty, so that the inductive inference of (45) from (44) remains valid
with our Irc-field based semantics.

We tackle this complex of questions in two stages: first we define
cross-entropy for Irc-field valued measures on finite spaces, and
prove that here generalized cross-entropy exhibits the same essential
properties as cross-entropy on the reals. In a secon